CNR

Il rapido aumento di radiocarbonio cosmogenico è avvenuto su scala globale

L’analisi su 27 specie arboree rivela come il rapido aumento di radiocarbonio cosmogenico verificatosi nel 774 e nel 993 sia avvenuto globalmente

Grazie all’analisi dendrocronologica su 27 specie arboree provenienti da 5 continenti, un recente studio del Cnr-Ivalsa e dell’Università di Padova rivela come il rapido aumento di radiocarbonio cosmogenico verificatosi nel 774 e nel 993, sia avvenuto su scala globale.

È emerso inoltre che la concentrazione di radiocarbonio atmosferico sia più elevata alle latitudini settentrionali. Lo studio è pubblicato su Nature Communications.(1)

Gli anelli del legno si confermano una fonte inesauribile d’informazioni scientifiche. Grazie alla più vasta collaborazione mai realizzata dalla comunità scientifica dei dendrocronologi è stato possibile determinare per la prima volta l’estensione su scala globale e la tempistica stagionale del rapido aumento delle concentrazioni atmosferiche di radiocarbonio (14C), relativo a due eventi verificatisi negli anni 774 e 993 AD.

La ricerca, pubblicata su Nature Communications ha coinvolto 67 studiosi di 57 istituti di tutto il mondo, tra cui due italiani: Mauro Bernabei dell’Istituto per la valorizzazione del legno e delle specie arboree del Consiglio nazionale delle ricerche (Cnr-Ivalsa) di San Michele all’Adige (Tn) e Marco Carrer dell’Università di Padova. I ricercatori hanno analizzato gli anelli del legno provenienti da alberi viventi, legni storici, scavi archeologici e resti di legni subfossili appartenenti a 27 specie da cinque continenti.

Nell’anno 774 AD si verificò un aumento repentino della concentrazione atmosferica di radiocarbonio pari a circa 20 volte il tasso normale: un episodio associato anche a un aumento della concentrazione dell’isotopo del Berillio (10BE) rilevato nelle carote di ghiaccio dell'Antartide.

Studio sulle simulazioni atomistiche del sistema cellulare composto da proteine e Rna

Una simulazione ha permesso di far luce, per la prima volta al mondo a livello atomico, sul funzionamento del sistema spliceosoma, composto da RNA e proteine

Per la prima volta una ricerca della Sissa e del Cnr fa luce con simulazioni atomistiche sul funzionamento di un complesso sistema cellulare, composto da proteine e Rna, i cui difetti sono coinvolti in più di 200 malattie.

Un passo fondamentale per lo sviluppo di possibili farmaci. La ricerca è stata pubblicata sulla rivista Pnas.(1)

Una raffinata simulazione al computer ha permesso ai ricercatori della Sissa e dell’Istituto officina dei materiali del Consiglio nazionale delle ricerche (Cnr-Iom) di far luce, per la prima volta al mondo a livello atomico, sul funzionamento di un sistema biologico importantissimo, il cui nome è spliceosoma, che lavora come il più abile maestro di atelier. Lo spliceosoma è composto da 5 filamenti di RNA e centinaia di proteine. I ricercatori hanno scoperto che tra questi elementi la proteina Spp42 del lievito (la cui corrispondente nell’uomo si chiama Prp8) coordina i diversi componenti che, tutti assieme, maneggiano i loro strumenti di sartoria per portare a termine un minutissimo processo di taglia e cuci grazie al quale l’informazione genetica può essere correttamente trasformata in un prodotto di perfetta fattura e quindi funzionante, come le proteine. Un processo cellulare molto delicato, il cui difetto è alla base di più 200 malattie nell’uomo, tra cui alcuni tipi di cancro. La comprensione del funzionamento delle componenti dello spliceosoma potrebbe essere di basilare importanza per la cura di queste patologie, ad esempio per lo sviluppo di nuovi farmaci in grado di regolare e modulare l’attività di questi ‘sarti molecolari’. La ricerca è appena stata pubblicata sulla rivista Proceedings of the National Academy of Science of the United States of America (Pnas).

Il ‘taglia e cuci’ dell’informazione genetica

Per dar vita al suo prodotto finale, un gene deve essere prima di tutto copiato da uno specifico apparato. La copia, denominata RNA messaggero o mRNA, è incaricata di trasportare l’informazione contenuta nel DNA agli altri apparati della cellula dove viene trasformata in proteine.

I virus nelle profondità degli oceani producono nutrienti per la catena alimentare

Se negli oceani ci sono le creature marine, il merito è anche dei virus che, infettando il plancton, rimettono in circolo i nutrienti per l’ecosistema

Una ricerca italo-spagnola che coinvolge l’Ismar-Cnr, pubblicata su Science Advances dimostra che negli oceani profondi le infezioni virali del plancton rilasciano ogni anno 140 gigatonnellate di carbonio organico fresco per la catena alimentare dell’ecosistema.

I risultati aiuteranno a migliorare le stime del ciclo globale del carbonio sulla terra, utili per la comprensione dei cambiamenti climatici

Se le profondità degli oceani continuano ad essere popolate da pesci e altre creature marine, il merito è anche dei virus che, infettando il plancton, rimettono in circolo nutrienti essenziali per la catena alimentare dell’ecosistema. A sostenerlo è uno studio pubblicato sulla rivista Science Advances realizzato da un team di ricerca italo-spagnolo che coinvolge l’Istituto di scienze marine del Consiglio nazionale delle ricerche (Ismar-Cnr) e l’omologo spagnolo Institut de Ciències del Mar del Consejo Superior de Investigaciones Científicas (Icm-Csic).

“La ricerca è basata sull’analisi di oltre mille campioni di acqua raccolti, dalla superficie fino alla profondità di 4.000 metri, lungo gli oceani Atlantico, Pacifico e Indiano nel corso di una spedizione scientifica condotta nel 2010 e finanziata dal Csic chiamata 'Malaspina Expedition' e che ricalca l’omonima spedizione di circumnavigazione del globo condotta da Alessandro Malaspina alla fine del 1700”, spiega Gian Marco Luna, ricercatore Ismar-Cnr di Ancona e coautore dello studio.

“Abbiamo dimostrato che i virus degli ambienti profondi, di cui finora si conosceva poco, sono in grado di predare il plancton microbico molto più attivamente di quanto ritenuto. Si stima che nell’oceano globale questi virus infettino ogni secondo centinaia di triliardi di microrganismi del plancton (un triliardo corrisponde a mille miliardi di miliardi).

Pagine