Tecnologia

Celle fotovoltaiche organiche ad alte prestazioni

Celle fotovoltaiche organiche ad alte prestazioni

Accettatore non fullerene a grande gap che consente celle fotovoltaiche organiche ad alte prestazioni per applicazioni indoor.

Scienziati svedesi e cinesi hanno sviluppato celle solari organiche ottimizzate per convertire la luce ambientale interna in elettricità. Il potere che producono non è elevato, ma probabilmente è sufficiente per alimentare i milioni di prodotti che Internet delle cose porterà online.

Man mano che l'internet delle cose si espanderà, ci si aspetterà che avremo milioni di prodotti online, sia negli spazi pubblici che nelle case. Molti di questi saranno la moltitudine di sensori per rilevare e misurare umidità, concentrazioni di particelle, temperatura e altri parametri. Per questo motivo, al fine di ridurre la necessità di sostituzioni di batterie frequenti e costose, la domanda di fonti rinnovabili ed economiche di energia sta aumentando rapidamente.

È qui che entrano in scena le celle solari organiche. Non solo sono flessibili, economiche da fabbricare e adatte alla produzione, come ad esempio in grandi superfici in una macchina da stampa, ma hanno un ulteriore vantaggio: lo strato che assorbe la luce è costituito da una miscela di materiali donatori e accettori, che offre una notevole flessibilità nell'accordare le celle solari in modo tale che siano ottimizzate per spettri diversi - per luce di lunghezze d'onda diverse.

Artrosi: un chip 'imita' la malattia per escogitare terapie mirate

Artrosi un chip imita la malattia per escogitare terapie mirate

Un chip sofisticato, delle dimensioni di una moneta, in cui è possibile coltivare la cartilagine e che in seguito può essere sottoposto a stress meccanico tale da generare gli effetti dell'artrosi.

Questo è lo straordinario risultato raggiunto presso il laboratorio MiMic (Microfluidic e Biomimetic Microsystems) del Politecnico di Milano del dottor Marco Rasponi (1) del campus di Milano, coordinatore dello studio insieme al dottor Andrea Barbero (2) dell'Ospedale Universitario di Basilea.

Non solo ha prodotto il chip rivoluzionario ma, mentre il piccolo dispositivo era in fase di sperimentazione, lo studio, pubblicato su Nature Biomedical Engineering, (3) ha anche dimostrato che l'iperstimolazione meccanica della cartilagine sembra essere sufficiente per indurre la patologia correlata all'osteoartrosi, senza dover ricorrere alla somministrazione di molecole infiammatorie come era comune fare fino ad ora.

Infatti, un'appropriata compressione del tessuto cartilagineo può indurre sintomi tipici dell'osteoartrosi (OA): infiammazione, ipertrofia e un'accelerazione dei processi degenerativi. Pertanto, nella cartilagine “su chip” si crea un ambiente ideale in cui testare l'efficacia e i meccanismi dei trattamenti farmacologici, abbreviando i tempi e i costi della sperimentazione e riducendo al contempo la necessità di test sugli animali.

Energia rinnovabile dalla plastica nera

Energia rinnovabile dalla plastica nera

Nuove ricerche potrebbero aiutare a ridurre i rifiuti di plastica in futuro. La plastica nera potrebbe creare energia rinnovabile.

Ricercatori della Swansea University hanno scoperto come le materie plastiche, comunemente presenti negli imballaggi per alimenti, possano essere riciclate per creare nuovi materiali come i fili elettrici. Questa scoperta potrebbe in futuro contribuire a ridurre la quantità di rifiuti di plastica. Mentre una piccola parte delle centinaia di tipi di plastica può essere riciclata con la tecnologia convenzionale, i ricercatori hanno scoperto che ci sono altre cose che possono essere fatte per riutilizzare la plastica dopo aver raggiunto il suo scopo originale.

La ricerca, pubblicata su The Journal for Carbon Research, (1) si concentra sul riciclaggio chimico che utilizza gli elementi costitutivi della plastica per produrre nuovi materiali.

Anche se tutte le materie plastiche sono fatte di carbonio, idrogeno e talvolta ossigeno, le quantità e le disposizioni di questi tre elementi rendono ogni plastica unica. Poiché le materie plastiche sono sostanze chimiche molto pure e altamente raffinate, possono essere scomposte in questi elementi e quindi incollate in diverse disposizioni per creare materiali di alto valore come i nanotubi di carbonio.

Pagine