Tecnologia

Modelli di estrapolazione verticale della velocità del vento

La ricerca ha analizzato 332 applicazioni inerenti alla velocità del vento condotte negli ultimi 40 anni, su 96 località nel mondo

Uno studio dell'Istituto di biometeorologia (Ibimet) del Cnr di Firenze, riflette sui modelli di estrapolazione verticale della velocità del vento ai fini della predicibilità eolica.

La ricerca, pubblicata su Renewable and Sustainable energy reviews, ha analizzato 332 applicazioni condotte negli ultimi 40 anni, su 96 località nel mondo

“Poter prevedere, sulla base di semplici misure a terra, il profilo verticale della velocità del vento fino a quote difficilmente raggiungibili con strumentazione dai costi contenuti è un evidente vantaggio, soprattutto nella fase di prefattibilità di un progetto d'impianto eolico”, spiega Giovanni Gualtieri dell'Istituto di biometeorologia del Consiglio nazionale delle ricerche (Cnr-Ibimet) di Firenze e autore dello studio.

Questo compito è affidato ai modelli di estrapolazione della velocità del vento, la cui utilità pratica diventa oggigiorno sempre più stringente se si considera il costante aumento delle dimensioni dei moderni aerogeneratori, caratterizzati da un'altezza dei mozzi regolarmente al di sopra di 60-80 m, ma che arriva a superare (soprattutto nei modelli offshore) anche i 150 m.

La ricerca, pubblicata su Renewable and Sustainable energy reviews, (1) passa in rassegna 332 applicazioni condotte in un arco temporale di 40 anni (1978–2018) su 96 località nel mondo poste ad altitudini comprese tra 0 e 2230 m s.l.m.. Tre famiglie di modelli sono state prese in esame: i modelli basati sul profilo logaritmico; (ii) modelli basati sulla legge di potenza; (iii) modello di Deaves ed Harris. Il lavoro documenta l'accuratezza dei modelli applicati su ogni specifica località e ne discute nell'insieme l'andamento prendendo in esame quattro diversi tipi di sito: (i) pianeggiante e prevalentemente privo di ostacoli; (ii) collinare/ondulato con vegetazione/alberi; (iii) montuoso con orografia complessa; (iv) in mare aperto. Le prestazioni dei modelli sono state analizzate nella capacità di prevedere accuratamente il valore della velocità del vento in quota, ma anche nel riuscire a raggiungere quote particolarmente elevate, come richiesto dai moderni modelli di turbina eolica. "Oltre alla mera accuratezza numerica grande risalto è stato dato alla convenienza economica di un modello piuttosto che di un altro, e quindi alla strumentazione più o meno a basso costo richiesta per ogni applicazione", evidenzia il ricercatore Cnr-Ibimet.

Tra i principali risultati raggiunti, lo studio evidenzia che i modelli basati sul profilo logaritimico (utilizzati in passato all'incirca nel 25.6% dei casi) risultano inadatti allo scopo, in quanto non in grado di raggiungere l'altezza tipica delle moderne turbine; essi presentano inoltre lo svantaggio di richiedere un'accurata stima della lunghezza di rugosità del sito (z0), cosa di norma alquanto complessa.

Creata una lega con la forza del titanio e la densità dell'acqua


Il “legno metallico” della Penn Engineer ha la forza del titanio e la densità dell'acqua

Mazze da golf ad alte prestazioni e ali per aeroplani sono realizzate in titanio, resistente come l'acciaio, ma pesante circa la metà. Queste proprietà dipendono dal modo in cui gli atomi di un metallo sono legati, ma i difetti che insorgono nel processo di fabbricazione fanno sì che questi materiali siano resistenti solo una minima parte di quello che teoricamente potrebbero essere.

Un architetto, lavorando sulla scala dei singoli atomi, potrebbe progettare e costruire nuovi materiali che abbiano rapporti di forza-peso ancora migliori.

In un nuovo studio pubblicato su Nature Scientific Reports, (1) i ricercatori della School of Engineering and Applied Science dell'Università della Pennsylvania, dell'Università dell’Illinois, dell’Università di Cambridge e la Middle East Technical University di Ankara, in Turchia, hanno fatto proprio questo. Hanno costruito un foglio di nichel con pori di dimensioni nanometriche che lo rendono resistente come il titanio ma da quattro a cinque volte più leggero.

Lo spazio vuoto dei pori e il processo di auto-assemblaggio in cui sono realizzati rendono il metallo poroso simile a un materiale naturale, come il legno.

E proprio come la porosità della venatura del legno serve alla funzione biologica di trasportare energia, lo spazio vuoto nel “legno metallico” dei ricercatori potrebbe essere infuso con altri materiali. Infondere l'impalcatura con materiali anodici e catodici consentirebbe a questo legno metallico di svolgere il doppio compito: un'ala piatta o una gamba protesica che divenga anche una batteria.

Lo studio è stato condotto da James Pikul, (2) Assistant Professor presso il Dipartimento di Ingegneria Meccanica e Meccanica Applicata presso la Penn Engineering.

Vasi sanguigni cresciuti in un laboratorio

Questi vasi sanguigni sono i primi ad essere cresciuti in un laboratorio, la tecnologia ha già generato un nuovo vantaggio nel trattamento del diabete

Un team di scienziati hanno creato vasi sanguigni umani uguali a quelli che trasportano il sangue in tutto il corpo.

L'ultimo elemento rivoluzionario nella ricerca sul diabete potrebbe non essere un nuovo farmaco o una nuova terapia. Potrebbe essere invece un sistema di vasi sanguigni umani praticamente identici a quelli che attualmente trasportano il sangue in tutto il corpo.

Ciò che rende speciali questi vasi sanguigni è che sono i primi ad essere cresciuti in un laboratorio, la tecnologia utilizzata dai ricercatori ha già generato un nuovo vantaggio nel trattamento del diabete.

Quando una persona ha il diabete, i suoi vasi sanguigni spesso mostrano un ispessimento anormale di quello che è conosciuto come “membrana basale”.

Tale ispessimento altera il trasferimento dell'ossigeno e delle sostanze nutrienti verso le cellule e i tessuti, ciò può causare numerosi di problemi di salute che variano dall'indebolimento dei reni fino ad arrivare agli infarti e alla cecità.

L'utilizzo degli organoidi

In uno studio pubblicato sulla rivista Nature, (1) i ricercatori della University of British Columbia hanno spiegato in che modo hanno impiegato le cellule staminali per far crescere degli organoidi vascolari in laboratorio, praticamente è stata realizzata una struttura tridimensionale che imita i vasi sanguigni umani. Il termine organoide viene utilizzato tutte le volte che vengono realizzati sistemi cellulari tridimensionali sistemi che imitano le caratteristiche di organi o tessuti.

Successivamente i ricercatori hanno disposto i vasi sanguigni sviluppati in laboratorio in una capsula di Petri progettata per imitare “un ambiente diabetico”.

Pagine