Quantistica

Una miscela di atomi con diversi spin

Osservato lo sviluppo di forti correlazioni quantistiche in un gas di atomi fermionici repulsivamente interagenti, raffreddato allo zero assoluto

Un team di ricerca del Cnr-Ino in collaborazione con il premio Nobel per la Fisica, Wolfgang Ketterle del MIT, ha osservato per la prima volta come una miscela di atomi con diversi spin, soggetta ad una forte interazione, formi uno stato simile alle emulsioni classiche.

Questo risultato rappresenta un traguardo per la comprensione dei fenomeni quantistici nella materia e per lo sviluppo di nuove tecnologie basate sulla meccanica quantistica.

Un team di ricercatori dell’Istituto nazionale di ottica del Consiglio nazionale delle ricerche (Cnr-Ino) e del Laboratorio europeo di spettroscopie non lineari (Lens) dell’Università di Firenze, afferente al gruppo di ricerca “Quantum Gases” diretto da Massimo Inguscio ed in collaborazione con il premio Nobel per la Fisica nel 2001, Wolfgang Ketterle del Massachusetts Institute of Technology (MIT), ha osservato per la prima volta lo sviluppo di forti correlazioni quantistiche in un gas di atomi fermionici repulsivamente interagenti, raffreddato a temperature prossime allo zero assoluto.

I ricercatori sono così riusciti a rivelare come la presenza simultanea ed antagonista di correlazioni repulsive ed attrattive tra le particelle favorisca l’insorgere nel gas di uno nuovo stato di emulsione, analogo quantistico e gassoso di emulsioni classiche come la maionese. La ricerca è pubblicata sulla prestigiosa rivista internazionale Physical Review Letters ed è stata selezionata come Editors’ Suggestion e Viewpoint in Physics. (1)

“Abbiamo inizialmente creato una miscela ultrafredda di due tipi di atomi, caratterizzati da spin differenti. Mediante un rapido impulso di radiazione a radiofrequenza, abbiamo fatto sì che gli atomi reagissero improvvisamente, formando coppie legate molecolari”, spiega Ketterle. “Utilizzando tecniche spettroscopiche di alta precisione abbiamo però osservato, che prima di legarsi gli atomi si respingono fortemente, formando a tempi lunghi uno stato eterogeneo di atomi e molecole analogo ad un’emulsione classica. Ci ha stupito scoprire come un sistema apparentemente semplice esibisca un comportamento così ricco e complesso, conseguenza solamente delle correlazioni quantistiche tra le particelle”.

I fisici registrano la durata della vita di un qubit grafene

Gli scienziati hanno misurato per quanto tempo un qubit grafene può mantenere uno stato che gli consente di rappresentare contemporaneamente due stati logici

I ricercatori del MIT di Boston hanno registrato la “coerenza temporale” di un qubit grafene - per quanto tempo mantiene uno stato speciale che gli consente di rappresentare contemporaneamente due stati logici - segnando un passo in avanti critico per il calcolo quantistico pratico. La prima misurazione del suo genere potrebbe fornire un trampolino di lancio per il calcolo quantistico pratico.

I ricercatori del MIT di Boston e di altri paesi hanno registrato, per la prima volta, la “coerenza temporale” di un qubit grafene, ovvero per quanto tempo può mantenere uno stato speciale che gli consente di rappresentare contemporaneamente due stati logici. Secondo gli scienziati la dimostrazione, che ha utilizzato un nuovo tipo di qubit basato su grafene, rappresenta un passo avanti fondamentale per il calcolo quantistico pratico.

I bit quantistici superconduttori (semplicemente i qubit) sono atomi artificiali che usano vari metodi per produrre bit di informazione quantistica, la componente fondamentale dei computer quantistici. Analogamente ai circuiti binari tradizionali nei computer, i qubit possono mantenere uno dei due stati corrispondenti ai classici bit binari, uno 0 o 1. Ma questi qubit possono anche essere una sovrapposizione di entrambi gli stati contemporaneamente, che potrebbe consentire ai computer quantistici di risolvere problemi complessi che sono praticamente impossibili per i computer tradizionali. La quantità di tempo in cui questi qubit rimangono in questo stato di sovrapposizione viene definito come il loro “tempo di coerenza”. Più lungo è il tempo di coerenza, maggiore è la capacità del qubit di calcolare problemi complessi.

Recentemente, i ricercatori hanno incorporato materiali basati su grafene in dispositivi di calcolo quantistico. Superconduttori che promettono un calcolo più veloce e più efficiente, tra gli altri vantaggi. Fino ad ora, tuttavia, non c'era alcuna coerenza registrata per questi qubit avanzati, quindi non si sa se sono fattibili per il calcolo quantistico pratico.

Nuove importanti ricerche per l'informatica quantistica

Gli scienziati mirano a ottenere un gate a fase controllata per due qubit fotonici che possono essere implementati su una piattaforma a semiconduttore

I professori Ku e Steel stanno applicando le loro competenze per intraprendere i prossimi passi chiave verso l'informatica quantistica pratica

I ricercatori in ingegneria elettrica e informatica stanno applicando la loro esperienza e creatività per migliorare la nostra capacità di utilizzare la tecnologia quantistica al fine di migliorare le comunicazioni, le potenzialità di calcolo, di elaborazione delle informazioni e della misurazione di precisione.

I professori Pei-Cheng Ku(1) e Duncan Steel(2) sono i due principali ricercatori dell'Università del Michigan coinvolti nel progetto, "Two-Photon Quantum Photonic Logic Gates Enabled by Photonic Bound States",(3) sostenuti dalla National Science Foundation e con sede presso la Washington University di St. Louis.

I ricercatori mirano a creare un nuovo approccio per ottenere un gate a fase controllata per due qubit fotonici che possono essere implementati su una piattaforma a semiconduttore. Il loro successo finale comporterà un significativo passo avanti nella realizzazione del pieno potenziale del calcolo quantico.

Le operazioni con un singolo qubit sono state raggiunte, ma non sono sufficienti per sfruttare il potenziale potere computazionale dell'elaborazione dell'informazione quantistica. Mentre le porte logiche fotoniche a due qubit sono state dimostrate teoricamente, la loro implementazione non è pratica né finanziariamente né tecnicamente.

Pagine