Quantistica

Misurare l'Universo con la fisica quantistica

Misurare l'Universo con la fisica quantistica

Uno studio teorico apre nuove prospettive per la messa a punto di dispositivi in grado di misurare l'Universo mediante la fisica quantistica, come gli interferometri capaci di rilevare fluttuazioni dello spazio-tempo legate a onde gravitazionali in arrivo.

Pubblicato sulla rivista della American Physical Society uno studio teorico tutto italiano che apre nuove prospettive per la messa a punto di dispositivi in grado di misurare l'Universo, come gli interferometri capaci di rilevare fluttuazioni dello spazio-tempo legate a onde gravitazionali in arrivo. Ne sono autori Marilù Chiofalo, professoressa di Fisica della materia all'Università di Pisa, e il suo dottorando Leonardo Lucchesi, che ne ha fatto l'oggetto della sua tesi di laurea magistrale. Lo studio uscito sulla “Physical Review Letters” si intitola "Many-Body Entanglement in Short-Range Interacting Fermi Gases for Metrology". (1)

Al centro della ricerca “made in Pisa” ci sono i fermioni, le particelle quantistiche così chiamate in onore di Enrico Fermi. Come tutte le particelle quantistiche, a ogni fermione è associata un'onda di probabilità di essere in un certo spazio ad un dato tempo, e due di loro possono essere preparati in modo da continuare a condividere determinate caratteristiche anche se allontanati a grande distanza, come se le loro onde di probabilità fossero irrimediabilmente aggrovigliate tra loro, una proprietà che viene chiamata entanglement: è come se, lanciando due dadi, l'uscita di un numero sul primo dado garantisca l'uscita dello stesso numero sull'altro.

Nello studio, questo concetto è esteso ad un insieme di moltissimi atomi di natura fermionica: “Usando la duplice natura delle correlazioni tra atomi - spiega Marilù Chiofalo- legata alle caratteristiche quantistiche e alle forze con cui interagiscono tra loro, è come se le onde di probabilità dei molti atomi entangled formassero un ciuffo di capelli non pettinato per anni.

Superfluidi quantistici di polaritoni

Superfluidi quantistici di polaritoni

Ricercatori Cnr-Nanotec hanno dimostrato che è possibile realizzare una giunzione Josephson in superfluidi quantistici di polaritoni. Analogamente a ciò che avviene tra superconduttori separati da un isolante, è stata osservata, per la prima volta in fluidi di luce interagente, una giunzione Josephson artificiale, dovuta alla differenza di fase fra due fluidi quantistici.

Nell'ultimo decennio, lo sviluppo di nuovi materiali ha portato alla creazione di dispositivi in cui anche la luce si comporta come un fluido quantistico, in alcune delle più intriganti manifestazioni della fisica quantistica - superfluidità, superconduzione e condensazione di Bose-Einstein - su scala macroscopica, ovvero in sistemi con migliaia di particelle.

In un articolo pubblicato su Nature Photonics, (1) i ricercatori dell'Istituto di nanotecnologia del Consiglio nazionale delle ricerche (Cnr-Nanotec) di Lecce, in collaborazione con l'Istituto di fisica dell'Accademia polacca delle scienze, hanno dimostrato che è possibile realizzare una giunzione Josephson (JJ) in superfluidi quantistici di polaritoni.

“Con questa complessa definizione tecnica, probabilmente poco comprensibile per i non addetti ai lavori, si esprime un fenomeno molto particolare che si può osservare al confine tra due fluidi quantistici di luce.

Pagine