- In:
- Posted By: Capuano Edoardo
- Commenti: 0
Le profonde reti neurali dell'intelligenza artificiale
Il laboratorio DiCarlo rileva che un'architettura ricorrente aiuta sia l'intelligenza artificiale che il nostro cervello a identificare meglio gli oggetti.
La capacità di ogni persona nel riconoscere oggetti è notevole. Se si vede una tazza sotto un'illuminazione insolita o da direzioni inaspettate, ci sono buone probabilità che il proprio cervello continui a calcolare che si tratta di una tazza. Tale riconoscimento preciso dell'oggetto è un 'santo graal' per gli sviluppatori di intelligenza artificiale, come gli scienziati che si occupano di migliorare la navigazione delle auto con guida autonoma.
Anche se la modellazione del riconoscimento degli oggetti principali nella corteccia visiva ha rivoluzionato i sistemi di riconoscimento visivo artificiale, gli attuali sistemi di apprendimento profondo sono semplificati e non riescono a distinguere alcuni oggetti la cui identificazione risulta essere molto intuitiva sia per i primati che per gli umani.
Nelle scoperte pubblicate su Nature Neuroscience, l'investigatore dell'Istituto McGovern James DiCarlo (1), assieme ai suoi colleghi, ha identificato prove che il feedback migliora il riconoscimento di oggetti difficili da riconoscere nel cervello dei primati e che l'aggiunta di circuiti di feedback migliora anche le prestazioni dei sistemi di reti neurali artificiali utilizzati per la visione di applicazioni.
Le reti neurali convoluzionali (2) profonde (DCNN) sono attualmente i modelli di maggior successo per il riconoscimento accurato di oggetti in tempi rapidi (meno di 100 millisecondi) e hanno un'architettura generale ispirata al flusso visivo delle regioni corticali che progressivamente costruiscono una rappresentazione accessibile e raffinata di oggetti visualizzati. La maggior parte dei DCNN sono tuttavia semplici rispetto al flusso del primate.