Nanostrutture

Un computer flessibile all'interno di un flacone di medicinali

Un computer flessibile all'interno di un flacone di medicinali

Un computer flessibile all'interno di un flacone di medicinali che invia avvisi wireless quando rileva manomissioni, sovradosaggio o condizioni di conservazione non sicure.

Queste sono solo alcune delle molte potenziali applicazioni per la tutela della salute che offre la nuova tecnologia dei sensori sviluppata da un team della King Abdullah University of Science & Technology (KAUST).

La tecnologia digitale offre opportunità per migliorare gli approcci tradizionali ai problemi che minacciano la salute umana. Ad esempio, le reti di piccoli sensori indossabili dispiegati negli ospedali possono essere utilizzate per monitorare i focolai dell'influenza in tempo reale. Ma gli alti costi, associati alla produzione elettronica, fanno sì che questi sensori non sono disponibili dove sono più necessari, come alle popolazioni a basso reddito che soffrono in modo sproporzionato le epidemie.

Il dottor Muhammed M. Hussain, (1), il dottorando Sherjeel Khan e colleghi stanno lavorando per rendere i sensori più accessibili con l'impiego di materiali più economici. Ad esempio, hanno recentemente dimostrato che è possibile creare sensori di temperatura e umidità dalla carta disegnando circuiti con inchiostro conduttivo.

Il team ha ora sviluppato un sensore elastico: un nastro conduttivo anisotropico con una vasta gamma di applicazioni sensibili al tocco. Assemblato, esso racchiude minuscole particelle d'argento tra due strati di nastro adesivo di rame. Il nuovo materiale non è conduttivo nel suo stato normale, ma quando viene premuto da un dito, il nastro a doppio strato crea una connessione elettrica che invia un segnale a un lettore esterno.

“Dispositivi simili sono stati utilizzati nei display a schermo piatto”, spiega Sherjeel Khan, “ma li abbiamo resi semplici da costruire e facili da usare praticamente da chiunque”.

Modello di materia soffice ad anelli elastici

Anelli elastici con taglia variabile da centinaia di nanometri a qualche micron come nuovo modello di materia soffice

Un team di ricerca del Cnr-Isc ha dimostrato, grazie a un modello numerico di materia composta da anelli elastici, come la risposta dinamica del sistema sia influenzata dall'abilità di deformarsi propria di questi colloidi soffici.

I colloidi sono particelle con taglia variabile da centinaia di nanometri a qualche micron e possono essere naturali o artificiali. L'avanzamento tecnologico degli ultimi 20 anni ha permesso di sintetizzare diverse varietà di queste particelle dalle molteplici proprietà, tra cui i cosiddetti colloidi 'soffici', fatti principalmente da materiale polimerico, ovvero catene flessibili che danno alle particelle la possibilità di deformarsi e di interpenetrarsi (pensate a delle reti estremamente morbide e intrecciate fra loro).

I collodi soffici presentano molteplici applicazioni ad esempio nella biomedicina, microfluidica e sensoristica ed è dunque importante comprendere come le proprietà di un singolo colloide influenzino il comportamento del materiale che essi formano.

In un recente studio numerico pubblicato su Nature Physics, (1) il team dell'Istituto dei sistemi complessi del Consiglio nazionale delle ricerche (Cnr-Isc), composto da Nicoletta Gnan e Emanuela Zaccarelli, ha mostrato che un modello numerico di particelle soffici con un'elasticità interna è in grado di riprodurre meccanismi osservati sperimentalmente, ma finora incompresi a livello microscopico.

“Ispirate dalla natura polimerica di questi colloidi, abbiamo deciso di lavorare in due dimensioni e di considerare dei semplici anelli polimerici elastici”, spiega Nicoletta Gnan. “Questi sono assimilabili a dei cerchietti la cui forma circolare viene mantenuta per via delle interazioni elastiche interne, che riescono quindi a mimare l'effetto di una rete polimerica. Più è forte l'interazione elastica, più gli anelli polimerici diventano duri, viceversa quanto meno forti sono le interazioni elastiche, quanto più soffici sono gli anelli. Questo permette loro di deformarsi e in questo modo di immagazzinare spontaneamente energia elastica (stress) che poi rilasciano quando riescono a tornare in forma circolare”.

Nano-laser costituito da una rete di nanofibre polimeriche

Il Nano-laser non-convenzionale è una sorta di minuscola e impalpabile ragnatela, un intreccio di nanofibre polimeriche che emettono e amplificano la luce

Ricercatori dell'Istituto nanoscienze del Cnr, Imperial College e Università di Pisa realizzano un nuovo tipo di Nano-laser basato su un reticolo di filamenti plastici che emettono e amplificano la luce.

Pubblicato su Nature Communications, lo studio apre la strada a una nuova classe di dispositivi che potranno essere usati come sorgenti di luce miniaturizzate e sensori ottici ad alta efficienza

Un team di ricercatori dell'Istituto nanoscienze del Consiglio nazionale delle ricerche (CnrNano) ha sviluppato un nuovo tipo di laser costituito da una rete di filamenti miniaturizzati di polimeri. Il risultato della collaborazione tra Imperial College di Londra, CnrNano, Università di Pisa, Università del Salento e Università di Exeter è pubblicato su Nature Communications, (1) e apre la strada ad una nuova classe di dispositivi laser che potranno essere usati come sorgenti di luce miniaturizzate e come sensori ottici ad alta efficienza.

Il cuore del laser non-convenzionale è una sorta di minuscola e impalpabile ragnatela, un intreccio di nanofibre polimeriche che emettono e amplificano la luce. “Contrariamente ai laser convenzionali che usano specchi o strutture periodiche per intrappolare ed amplificare la luce, in questo dispositivo essa è prodotta e amplificata dalla rete di filamenti”, spiega Andrea Camposeo di CnrNano. “Le nanofibre emettono luce e poi funzionano come fibre ottiche lungo le quali questa si propaga: intrappolata nel reticolo lungo i percorsi di una matrice disordinata la luce è soggetta a interferenze in centinaia di nodi ed emerge amplificata come luce laser”.

I ricercatori hanno realizzato una rete di nanofili composti da materiale fotoattivo, con un diametro di tra i 200 e i 500 nanometri (un nanometro è pari a un milionesimo di millimetro) e con un elevato numero di nodi e di rami. Ogni struttura è una rete disordinata planare, ramificata così da connettere ciascun nodo al loro vicino più prossimo.

Pagine