Nanostrutture

Nuovi composti per i superconduttori

Questo studio scientifico dimostra che si può riprodurre una superconduttività in composti con argento e fluoro al posto di rame e ossigeno

Temperature relativamente più alte per raggiungere la superconduttività con argento e fluoro al posto di rame e ossigeno (con i quali si è ottenuto il record premiato con il Nobel).

È quanto propone un team di ricerca internazionale cui partecipa il Consiglio nazionale delle ricerche (Ismn, Istituto Spin, Isc). Tale risultato potrebbe consentire un utilizzo molto più economico nella diagnostica medica e negli acceleratori. Lo studio è pubblicato su su Proceeding of the National Academy of Sciences (Pnas). (1)

I superconduttori ‘chiedono’ il freddo per condurre l'elettricità senza perdita d'energia. Infatti se portati a temperature pari o inferiori a -140? permettono un moto perpetuo degli elettroni che viene sfruttato per creare grandi campi magnetici. Tuttavia questi materiali speciali, usati per la diagnostica medica, per esempio la risonanza magnetica, o negli esperimenti nei grandi acceleratori come Lhc del Cern potrebbero essere utilizzati più ampiamente se si potesse evitare di raffreddarli a bassissima temperatura, operazione che richiede costi elevati.

Un team internazionale composto da ricercatori del Consiglio nazionale delle ricerche (Istituto per lo studio dei materiali nanostrutturati, Istituto Spin, Istituto dei sistemi complessi) e colleghi di Polonia, Regno Unito, Slovenia, Stati Uniti e Repubblica Slovacca hanno proposto una nuova famiglia di composti.

“Finora il record a pressione ambiente è stato ottenuto con una famiglia di materiali contenenti rame e ossigeno che devono essere raffreddati ‘solo’ fino a -140? per diventare superconduttori: una scoperta che è valsa il premio Nobel a Bednorz e Müller nel 1987”, spiega José Lorenzana, direttore dell’Istituto dei sistemi complessi (Cnr-Isc).

“Curiosamente, i materiali di base per fare questi superconduttori non sono buoni conduttori ma ceramici isolanti, simili a una porcellana con caratteristiche molto peculiari, in grado di sfidare le leggi basilari sulla conduttività dei solidi e con forti fluttuazioni quantistiche, fenomeni considerati il “concime”, cioè necessari, per raggiungere la superconduttività ad alta temperatura. Solo dopo un’appropriata sostituzione chimica diventano metallici a temperatura ambiente e superconduttori se raffreddati. I nostri studi hanno mostrato che è possibile riprodurre lo stesso ‘concime quantistico’ che dà luogo alla superconduttività in materiali con argento e fluoro al posto di rame e ossigeno”.

Neurostimolatore wireless per i disturbi neurologici

Il nuovo neurostimolatore WAND funziona come un pacemaker per il cervello. Effettua trattamenti mirati ai pazienti affetti da epilessia e Parkinson

Un nuovo neurostimolatore sviluppato dagli ingegneri dell'UC Berkeley può percepire e stimolare la corrente elettrica nel cervello allo stesso tempo, offrendo trattamenti mirati ai pazienti con malattie come l'epilessia e il Parkinson.

Il dispositivo, chiamato WAND, funziona come un “pacemaker per il cervello”, controlla l'attività elettrica del cervello fornendo una stimolazione elettrica nel momento in cui rileva qualcosa di anomalo.

Questi dispositivi possono essere estremamente efficaci per prevenire tremori o convulsioni debilitanti in pazienti con una varietà di condizioni neurologiche. Gli impulsi elettrici che precedono un attacco o un tremore possono essere estremamente deboli. Per prevenire questi disturbi neurologici la frequenza e la forza della stimolazione elettrica richieste devono essere particolarmente mirate.

I precedenti dispositivi offrivano un trattamento ottimale solo dopo anni di piccoli aggiustamenti da parte dei medici. 'WAND' (Wireless Artifact-free Neuromodulation Device) è un dispositivo wireless autonomo: nel momento in cui riconosce i segni del tremore o delle convulsioni, ha la capacità di regolare autonomamente i parametri di stimolazione che inibiscono i movimenti indesiderati. Questo dispositivo a circuito chiuso può stimolare e registrare simultaneamente, ma anche regolare i parametri in tempo reale. 'WAND' può registrare l'attività elettrica su 128 canali o da 128 punti nel cervello. Un coefficiente molto elevato se si considera che i tradizionali sistemi a circuito chiuso si basano su otto canali. Per dimostrare il dispositivo, il team ha utilizzato 'WAND' per riconoscere e ritardare i movimenti specifici del braccio nei macachi Rhesus. Il dispositivo è descritto in uno studio apparso in Nature Biomedical Engineering.(1)

La dottoressa Rikky Muller,(2) una assistente professoressa di ingegneria elettronica e scienze informatiche a Berkeley spiega: “Il processo per trovare la giusta terapia di un paziente è estremamente costoso e può richiedere anni. Una significativa riduzione dei costi e della durata può potenzialmente portare a risultati e accessibilità notevolmente migliorati. Vogliamo consentire al dispositivo di capire qual è il modo migliore per stimolare un dato paziente a dare i migliori risultati. E puoi farlo solo ascoltando e registrando i segnali neurali.”

Creati nuovi sensori per monitorare la dopamina nel cervello

I neuroscienziati del MIT potranno misurare la dopamina nel cervello per più di un anno. Questo sistema li aiuterà a capire il ruolo della dopamina.

Piccole sonde installate nel cervello potrebbero monitorare i pazienti malati di Parkinson e altre patologie.

La dopamina, che all'interno del cervello funziona da neurotrasmettitore, tramite l'attivazione dei recettori dopaminici specifici e subrecettori, svolge un ruolo importante nel regolare il nostro umore, oltre a controllare il movimento. Molti disturbi, tra cui il morbo di Parkinson, la depressione e la schizofrenia, sono legati a carenze di dopamina. I neuroscienziati del MIT hanno escogitato un modo per misurare la dopamina nel cervello per più di un anno. Essi sono certi che questo nuovo sistema li aiuterà a imparare molto di più sul ruolo della dopamina nel cervello sano e malato.

“Sappiamo che la dopamina è una cruciale molecola neurotrasmettitrice nel cervello, implicata nelle condizioni neurologiche, neuropsichiatriche e nella nostra capacità di apprendere. Tuttavia, per noi è risultato impossibile monitorare i mutamenti nel rilascio online di dopamina in periodi di tempo abbastanza lunghi da riferirli alle condizioni cliniche”, afferma Ann Graybiel,(1) professoressa del MIT Institute, membro del McGovern Institute for Brain Research del MIT e uno degli autori senior dello studio.

Il dottor Michael J. Cima,(2) professore di ingegneria presso il Dipartimento di Scienza dei Materiali e Ingegneria nonché membro del David H. Koch Institute for Integrative Cancer Research (Massachusetts Institute of Technology MIT) per la ricerca sul cancro integrativo, e Rober Langer,(3) Professore e membro del David H. Koch Institute for Integrative Cancer Research (Massachusetts Institute of Technology MIT). Entrambi sono anche autori principali dello studio. La dottoressa del MIT Helen Schwerdt è l'autore principale dell'articolo, che appare nel numero del 12 settembre di Communications Biology.(4)

Pagine