Fisica

Nuovo modo per far rimbalzare le gocce d'acqua

Nuovo modo per far rimbalzare le gocce d'acqua

Gli ingegneri progettano superfici che possono rimbalzare la pioggia prevenendo potenzialmente la formazione di ghiaccio o il ristagno dell'acqua.

In molti ambiti, gli ingegneri vogliono minimizzare il contatto di goccioline d'acqua o altri liquidi con le superfici su cui cadono. L'obiettivo è quindi quello di impedire che il ghiaccio si accumuli su un'ala di un aeroplano o una pala di una turbina, prevenire la dispersione di calore da una superficie durante la pioggia, prevenire l'accumulo di sale sulle superfici esposte agli spruzzi dell'acqua di mare. Far rimbalzare le goccioline il più velocemente possibile e ridurre al minimo la quantità di contatto con la superficie può essere la chiave per mantenere il corretto funzionamento dei sistemi.

Lo studio è descritto nella rivista ACS (1) Nano in un documento del dottor Henri-Louis Girard, del MIT, del post dottorato Dan Soto e del professore di ingegneria meccanica Kripa Varanasi. (2) Questo processo, spiegano gli autori, genera una serie di forme ad anello sollevate dalla superficie del materiale. Nel momento in cui la gocciolina cade, invece di scorrere piatta attraverso la superficie, schizza verso l'alto assumendo una configurazione a forma di ciotola.

Il lavoro è il seguito di un precedente progetto (3) del dottor Kripa Varanasi e del suo team. Essi ridussero il tempo di contatto delle goccioline su una superficie creando creste sollevate che interruppero il normale modello di diffusione delle gocce sul piano piatto. Il nuovo lavoro rappresenta un passo evolutivo del progetto in quanto permette di ottenere una maggiore riduzione del tempo di impatto tra la goccia e la superficie su cui essa va a collidere.

Sviluppati sensori quantici per misurare molecole

Sviluppati sensori quantici per misurare molecole

I ricercatori dell'Università Leibniz Hannover e Physikalisch-Technische Bundesanstalt sviluppano sensori quantici più sensibili per misurazioni molecolari.

Per secoli, gli esseri umani hanno ampliato la loro comprensione del mondo attraverso misurazioni sempre più precise della luce e della materia. Oggi i sensori quantici ottengono risultati estremamente accurati. Un esempio di questo è lo sviluppo di orologi atomici, che non dovrebbero né guadagnare né perdere più di un secondo in trenta miliardi di anni. Le onde gravitazionali sono state rilevate anche tramite sensori quantistici, in questo caso utilizzando interferometri ottici.

I sensori quantistici possono raggiungere sensibilità che sono impossibili secondo le leggi della fisica convenzionale che governa la vita di tutti i giorni. Questi livelli di sensibilità possono essere raggiunti solo se si entra nel mondo della meccanica quantistica con le sue affascinanti proprietà - come il fenomeno della sovrapposizione, in cui gli oggetti possono essere in due posti contemporaneamente e dove un atomo può avere due diversi livelli di energia allo stesso livello tempo.

Sia generare che controllare tali stati non classici è estremamente complesso. A causa dell'alto livello di sensibilità richiesto, queste misurazioni sono soggette a interferenze esterne. Inoltre, gli stati non classici devono essere adattati a uno specifico parametro di misurazione.

Il dottor Fabian Wolf, assieme al team di ricercatori dell'Università Leibniz di Hannover, Physikalisch-Technische Bundesanstalt di Braunschweig e dell'Istituto nazionale di ottica di Firenze, ha introdotto un metodo basato su uno stato non classico adattato a due parametri di misurazione contemporaneamente. Egli afferma: “sfortunatamente, questo spesso determina una maggiore inesattezza rispetto ad altri parametri di misurazione rilevanti. Questo concetto è strettamente legato al principio di indeterminazione di Heisenberg.”

Gli esperimenti rivelano la fisica dell'evaporazione

Gli esperimenti rivelano la fisica dell'evaporazione

Durante il processo della fisica dell'evaporazione i cambiamenti di pressione, più della temperatura, influenzano fortemente la velocità con cui i liquidi si trasformano in gas.

È un processo così fondamentale per la vita di tutti i giorni - in ogni cosa, dalla tua caffettiera mattutina alla grande centrale elettrica - che spesso è dato per scontato: il modo in cui un liquido si allontana da una superficie calda.

Eppure sorprendentemente, questo processo di base è stato solo ora, per la prima volta, analizzato in dettaglio a livello molecolare, in una nuova analisi del dottor Zhengmao Lu, (1) del del Massachusetts Institute of Technology, professore di ingegneria meccanica e capo del dipartimento della scienziata Evelyn Wang, (2) e altri tre al Massachusetts Institute of Technology e all'Università di Tokyo. Lo studio appare sulla rivista Nature Communications.

La dottoressa Evelyn Wang spiega: “Si scopre che per il processo di cambiamento di fase liquido-vapore, una comprensione fondamentale è ancora relativamente limitata. Sebbene siano state sviluppate molte teorie, in realtà non ci sono prove sperimentali dei limiti fondamentali della fisica dell'evaporazione. È un processo importante da capire perché è così onnipresente. L'evaporazione è prevalente in diversi tipi di sistemi come la generazione di vapore per centrali elettriche, le tecnologie di desalinizzazione dell'acqua, la distillazione a membrana e la gestione termica, come ad esempio i tubi di calore. Ottimizzare l'efficienza di tali processi richiede una chiara comprensione delle dinamiche in gioco, ma in molti casi gli ingegneri fanno affidamento su approssimazioni o osservazioni empiriche per guidare le loro scelte di materiali e condizioni operative.”

Utilizzando una nuova tecnica per controllare e rilevare le temperature sulla superficie di un liquido, i ricercatori sono stati in grado di identificare un insieme di caratteristiche universali correlate ai cambiamenti di tempo, pressione e temperatura che determinano i dettagli del processo di evaporazione. Nel processo, hanno scoperto che il fattore chiave, che determinava la velocità di evaporazione del liquido, non era la differenza di temperatura tra la superficie e il liquido ma piuttosto la differenza di pressione tra la superficie del liquido e il vapore ambientale.

Pagine