Molecole

La tecnologia plug-and-play automatizza la sintesi chimica

I ricercatori hanno sviluppato il sistema di sintesi chimica automatizzato plug-and-play in grado di migliorare ulteriormente la sperimentazione

Il sistema plug-and-play semplifica la produzione chimica di nuove molecole per una miriade di applicazioni.

Progettare una nuova sintesi chimica può essere un processo laborioso con una buona dose di pazienza: miscelare prodotti chimici, misurare le temperature, analizzare i risultati e ricominciare da capo se non funziona. I ricercatori del MIT hanno ora sviluppato un sistema di sintesi chimica automatizzato in grado di eliminare molti degli aspetti più noiosi della sperimentazione.

“Il nostro obiettivo era creare un sistema facile da usare che consentisse agli scienziati di trovare le migliori condizioni per rendere le loro molecole più interessanti da studiare - una piattaforma di sintesi chimica generale con la massima flessibilità possibile”, afferma Timothy F. Jamison,(1) capo del dipartimento di chimica del MIT e uno dei leader del gruppo di ricerca.

Questo sistema potrebbe ridurre la quantità di tempo necessaria per ottimizzare una nuova reazione: da settimane o mesi a un solo giorno. I ricercatori hanno brevettato la tecnologia e sperano che sarà ampiamente utilizzata nei laboratori di chimica accademica e industriale.

“Quando abbiamo deciso di intraprendere questo progetto, volevamo che fosse qualcosa generalmente utilizzabile in laboratorio e non troppo costoso”, dice Klavs F. Jensen,(2) il professore di ingegneria chimica di Warren K. Lewis al MIT, dirigente del gruppo di ricerca, “Volevamo sviluppare una tecnologia che avrebbe reso molto più facile per i chimici sviluppare nuove reazioni”.

L'ex post dottorato del MIT la dottoressa Anne-Catherine Bédard e l'ex ricercatore del MIT il dottor Andrea Adamo sono gli autori principali dello studio pubblicato nell'edizione online di Science del 20 settembre.(3)

Scoperto il meccanismo dell'effetto Mpemba

Ghiaccio - laboratorioUn team di ricercatori della Nanyang Technological University di Singapore è finalmente riuscito a risolvere il mistero del perché l'acqua calda congela più velocemente dell'acqua fredda.

Trattasi del noto, ma alquanto inspiegabile, effetto Mpemba, scoperto inizialmente nel IV secolo a.C. grazie ad Aristotele (e riscoperto casualmente nel 1969 dallo studente tanzaniano Erasto Mpemba, da cui il nome); per questo effetto sono state proposte numerose ipotesi al fine di giustificare il comportamento così contro-intuitivo, tuttavia nessuna di queste, finora, è stata realmente conclusiva.

Sembrerebbe un’assurdità termodinamica, ma da quando i gelatai lo hanno scoperto non riescono più a farne a meno. Ad ogni modo l'effetto Mpemba, ha a che fare con il modo in cui l'energia viene immagazzinata nei legami idrogeno tra le molecole d'acqua.

Come tutti sanno, le molecole d'acqua hanno un atomo di ossigeno e due atomi di idrogeno, il tutto tenuto insieme da legami covalenti. Allo stesso tempo gli atomi di idrogeno di una molecola sono attratti dagli atomi di ossigeno delle altre molecole vicine, per mezzo del legame idrogeno, ma nonostante questa attrazione, nel complesso le molecole d'acqua si respingono tra loro ad una certa distanza.

Creati nanomotori molecolari all'interno di cellule umane viventi

NanomotorsPer la prima volta gli scienziati sono riusciti a piazzare piccoli motori all'interno di cellule umane viventi e a guidarli tramite il magnetismo.

Lo studio della Penn State University rappresenta un altro passo avanti verso le macchine molecolari che potrebbero essere usate per, ad esempio, rilasciare farmaci in specifici luoghi del corpo.

Lo studio è stato pubblicato sulla rivista 'Angewandte Chemie International Edition'.

“I nanomotori si muovono, tramite impulsi ultrasonici, all'interno delle cellule e queste mostrano risposte meccaniche interne che nessuno aveva mai visto prima”, ha spiegato Tom Mallouk, fra gli autori della ricerca.

Finora i nanomotori erano stati solo studiati in vitro, ossia in apparati di laboratorio, e mai in cellule umane viventi.

Pagine