Scienza

Nanocubi per individuare malattie neurodegenerative

Nanocubi per individuare malattie neurodegenerativeIl metodo innovativo utilizza nanocristalli d’argento che, attivati con luce laser, consentono di individuare anche minime tracce molecolari di malattie neurodegenerative. Lo ha messo a punto un team, guidato dall’Ifac-Cnr di Firenze, e formato da ricercatori dell’Imm-Cnr di Catania, dell’Università di Modena e Reggio Emilia e dell’Università di Saratov (Russia). Lo studio è stato pubblicato su Acs Nano

Grazie a una tecnica innovativa è possibile identificare l’‘impronta digitale’ di proteine e biomarcatori quando sono ancora presenti in minime tracce, riuscendo così a effettuare una diagnosi precoce di malattie neurodegenerative, quali l’Alzheimer e il Parkinson.

A metterla a punto, un team di ricercatori dell’Istituto di fisica applicata (Ifac-Cnr), in collaborazione con i colleghi dell’Istituto di microelettronica e microsistemi (Imm-Cnr), del Dipartimento di chimica e scienze geologiche dell’Università di Modena e Reggio Emilia e dell’Università statale di Saratov (Russia). La ricerca è stata pubblicata su Acs Nano.

“La metodologia si basa sull’attivazione laser di nanocristalli (cristalli che hanno dimensioni dell'ordine del nanometro, unità di misura equivalente a un miliardesimo di metro) d’argento a forma di cubo; attivazione che consente di identificare molecole precursori della malattia presenti nei fluidi biologici (sangue, urina, fluido cerebrospinale)”, spiega Paolo Matteini dell’Ifac-Cnr, primo autore del lavoro e coordinatore del team.

Svelato il cristallo temporale

RicerchePer la maggior parte delle persone, quando si parla di cristalli si intendono diamanti, pietre dure o forse i cristalli di ametista o di quarzo amate dai collezionisti. Per Norman Yao, questi cristalli inerti sono solo la punta dell’iceberg.

Se i cristalli hanno una struttura atomica che si ripete nello spazio, come il reticolo di carbonio di un diamante, perché allora i cristalli non potrebbero avere una struttura che si ripete nel tempo?

Cioè un cristallo temporale?

In un documento presentato on line sulla rivista Physical Review Letters l’assistente professore di fisica della UC Berkeley descrive esattamente come creare e misurare le proprietà di tali cristalli e anche prevedere quali siano le varie fasi che dovrebbero circondare il cristallo temporale, simili alle fasi liquide e gassose nel ghiaccio.

Questo diagramma di fase mostra come il modificare i parametri sperimentali possa “fondere” un cristallo di tempo in un normale isolante o portarlo in uno stato termico ad alta temperatura. Grafica di Norman Yao.

Questa non è solo mera speculazione. Due gruppi hanno seguito le indicazioni di Yao ed hanno già creato i primi cristalli temporali.

Progettate pile 10 volte più potenti simulando la struttura della melagrana

Presso l’Università di Stanford degli ingegnosi studiosi, in collaborazione con il National Accelerator Laboratory del DOE, hanno progettato un elettrodo che, simulando la struttura della melagrana, è capace di immagazzinare fino a dieci volte l’energia che le pile riescono normalmente ad accumulare.

Il professor Yi Cui, associato all’Università di Stanford e capo del team di ricerca, spiega così questa invenzione: “Abbiamo di fronte ancora un paio di sfide, ma questo design ci porta ad un passo dall’utilizzare anodi di silicio in piccole batterie, più leggere e più potenti di quelle attuali, per prodotti come telefoni cellulari, tablet e macchine elettriche. Gli esperimenti hanno mostrato il nostro anodo a melograno funziona ad una capacità del 97 per cento anche dopo 1000 cicli di carica e scarica, collocandosi così ben all’interno della gamma desiderata per operazione commerciale”.

Gli anodi in silicio possono arrivare a memorizzare una carica pari a quasi 10 volte quella della grafite presente nelle tradizionali batterie agli ioni di litio e per ricavare il silicio per il momento si sta valutando di estrarlo dal residuo dell’involucro dei chicchi di riso che sono composti per ben il 20% dalla sostanza organica costituita da diossido di silicio.

Il silicio è fragile e dunque rischia di deformarsi o addirittura deteriorarsi durante la carica della batteria.

Pagine