Scienza

Una miscela di atomi con diversi spin

Osservato lo sviluppo di forti correlazioni quantistiche in un gas di atomi fermionici repulsivamente interagenti, raffreddato allo zero assoluto

Un team di ricerca del Cnr-Ino in collaborazione con il premio Nobel per la Fisica, Wolfgang Ketterle del MIT, ha osservato per la prima volta come una miscela di atomi con diversi spin, soggetta ad una forte interazione, formi uno stato simile alle emulsioni classiche.

Questo risultato rappresenta un traguardo per la comprensione dei fenomeni quantistici nella materia e per lo sviluppo di nuove tecnologie basate sulla meccanica quantistica.

Un team di ricercatori dell’Istituto nazionale di ottica del Consiglio nazionale delle ricerche (Cnr-Ino) e del Laboratorio europeo di spettroscopie non lineari (Lens) dell’Università di Firenze, afferente al gruppo di ricerca “Quantum Gases” diretto da Massimo Inguscio ed in collaborazione con il premio Nobel per la Fisica nel 2001, Wolfgang Ketterle del Massachusetts Institute of Technology (MIT), ha osservato per la prima volta lo sviluppo di forti correlazioni quantistiche in un gas di atomi fermionici repulsivamente interagenti, raffreddato a temperature prossime allo zero assoluto.

I ricercatori sono così riusciti a rivelare come la presenza simultanea ed antagonista di correlazioni repulsive ed attrattive tra le particelle favorisca l’insorgere nel gas di uno nuovo stato di emulsione, analogo quantistico e gassoso di emulsioni classiche come la maionese. La ricerca è pubblicata sulla prestigiosa rivista internazionale Physical Review Letters ed è stata selezionata come Editors’ Suggestion e Viewpoint in Physics. (1)

“Abbiamo inizialmente creato una miscela ultrafredda di due tipi di atomi, caratterizzati da spin differenti. Mediante un rapido impulso di radiazione a radiofrequenza, abbiamo fatto sì che gli atomi reagissero improvvisamente, formando coppie legate molecolari”, spiega Ketterle. “Utilizzando tecniche spettroscopiche di alta precisione abbiamo però osservato, che prima di legarsi gli atomi si respingono fortemente, formando a tempi lunghi uno stato eterogeneo di atomi e molecole analogo ad un’emulsione classica. Ci ha stupito scoprire come un sistema apparentemente semplice esibisca un comportamento così ricco e complesso, conseguenza solamente delle correlazioni quantistiche tra le particelle”.

Creata una pillola che somministra insulina nello stomaco

La capsula pillola, dalle dimensione di un mirtillo, dispone di un piccolo ago fatto di insulina compressa che viene iniettato nello stomaco

La pillola tecnologica rilascia insulina nello stomaco e potrebbe sostituire le iniezioni per i pazienti con diabete di tipo 1.

Un gruppo di scienziati, diretto dal Massachusetts Institute of Technology di Boston, ha sviluppato una capsula farmacologica che potrebbe essere utilizzata per somministrare dosi di insulina. Questo nuovo dispositivo tecnologico potrebbe sostituire le normali iniezioni somministrate giornalmente ai pazienti con diabete di tipo 1.

La capsula, dalle dimensione di un mirtillo, dispone di un piccolo ago fatto di insulina compressa che viene iniettato nel momento in cui il dispositivo raggiunge lo stomaco. Nei test sugli animali, i ricercatori hanno dimostrato che potevano fornire abbastanza insulina per abbassare lo zucchero nel sangue a livelli paragonabili a quelli prodotti dalle iniezioni somministrate attraverso la pelle. Essi hanno anche dimostrato che il dispositivo può essere adattato per somministrare altri farmaci proteici.

Il dottor Robert Langer, (1) professore del David H. Koch Institute, membro del MIT Koch Institute for Integrative Cancer Research e uno degli autori senior dello studio, ha dichiarato: “Siamo davvero fiduciosi per questo nuovo tipo di capsula che in futuro potrebbe aiutare i pazienti diabetici e forse chiunque abbia bisogno di terapie, che attualmente possono essere somministrate solo mediante iniezione o infusione.”

Nuovo meccanismo delle proteine BRCA1 BRCA2 nella riparazione del DNA

Il nuovo studio dimostra che l’RNA sintetizzato nel sito del danno si appaia al DNA da cui è trascritto, formando una particolare struttura ibrida

In una ricerca condotta nei laboratori dell’IFOM di Milano alcuni ricercatori hanno osservato per la prima volta un nuovo aspetto del meccanismo di reclutamento delle proteine BRCA1 e BRCA2 nella riparazione del DNA.

Sono le strutture ibride di DNA e RNA che si creano dove il DNA è danneggiato ad attrarre i due fattori, che poi cooperano a riparare il danno stesso. Gli scienziati, oltre ad aver chiarito il meccanismo, stanno individuando una strategia terapeutica per intervenire sulla formazione e funzione di questi ibridi tramite l’utilizzo di molecole antisenso. In questo modo si impedirà la riparazione del DNA esistente, attaccando perciò un punto debole della cellula tumorale.

Le proteine codificate dai geni BRCA1 e BRCA2 hanno un ruolo importante e riconosciuto: mantengono la stabilità del genoma e in particolare contribuiscono a riparare il DNA quando è danneggiato. In caso di mutazioni in BRCA1 e BRCA2, l’organismo è esposto all’accumulo di difetti non riparati nel DNA e alla potenziale conseguente formazione di neoplasie tumorali, tra cui i principali sono tumori femminili di mammella e ovaio.

Nonostante il ruolo delle proteine BRCA1 e BRCA2 nella riparazione del DNA sia da tempo noto, il meccanismo del loro intervento era ancora oscuro. Una scoperta fatta dal gruppo di Fabrizio d’Adda di Fagagna dell’Ifom di Milano e dell’Istituto di genetica molecolare del Consiglio nazionale delle ricerche di Pavia (Cnr-Igm), nel solco delle ricerche sulla caratterizzazione del ruolo dell’RNA nella risposta cellulare al danno al DNA, ha svelato un nuovo aspetto di tale modalità di intervento e ha individuato una potenziale prospettiva terapeutica.

Per capire come si sia arrivati a questa scoperta bisogna partire da due ricerche precedenti in cui il laboratorio di d’Adda di Fagagna ha messo in evidenza per la prima volta che l’RNA ha un ruolo fondamentale nella protezione del DNA: dove il DNA è danneggiato sono prodotte delle molecole di RNA che contribuiscono al riconoscimento e alla riparazione della lesione stessa (i risultati sono stati pubblicati rispettivamente su Nature (1) nel 2012 e su Nature (2) Cell Biology nel 2017).

Pagine