Proteine

Nuovo meccanismo delle proteine BRCA1 BRCA2 nella riparazione del DNA

Il nuovo studio dimostra che l’RNA sintetizzato nel sito del danno si appaia al DNA da cui è trascritto, formando una particolare struttura ibrida

In una ricerca condotta nei laboratori dell’IFOM di Milano alcuni ricercatori hanno osservato per la prima volta un nuovo aspetto del meccanismo di reclutamento delle proteine BRCA1 e BRCA2 nella riparazione del DNA.

Sono le strutture ibride di DNA e RNA che si creano dove il DNA è danneggiato ad attrarre i due fattori, che poi cooperano a riparare il danno stesso. Gli scienziati, oltre ad aver chiarito il meccanismo, stanno individuando una strategia terapeutica per intervenire sulla formazione e funzione di questi ibridi tramite l’utilizzo di molecole antisenso. In questo modo si impedirà la riparazione del DNA esistente, attaccando perciò un punto debole della cellula tumorale.

Le proteine codificate dai geni BRCA1 e BRCA2 hanno un ruolo importante e riconosciuto: mantengono la stabilità del genoma e in particolare contribuiscono a riparare il DNA quando è danneggiato. In caso di mutazioni in BRCA1 e BRCA2, l’organismo è esposto all’accumulo di difetti non riparati nel DNA e alla potenziale conseguente formazione di neoplasie tumorali, tra cui i principali sono tumori femminili di mammella e ovaio.

Nonostante il ruolo delle proteine BRCA1 e BRCA2 nella riparazione del DNA sia da tempo noto, il meccanismo del loro intervento era ancora oscuro. Una scoperta fatta dal gruppo di Fabrizio d’Adda di Fagagna dell’Ifom di Milano e dell’Istituto di genetica molecolare del Consiglio nazionale delle ricerche di Pavia (Cnr-Igm), nel solco delle ricerche sulla caratterizzazione del ruolo dell’RNA nella risposta cellulare al danno al DNA, ha svelato un nuovo aspetto di tale modalità di intervento e ha individuato una potenziale prospettiva terapeutica.

Per capire come si sia arrivati a questa scoperta bisogna partire da due ricerche precedenti in cui il laboratorio di d’Adda di Fagagna ha messo in evidenza per la prima volta che l’RNA ha un ruolo fondamentale nella protezione del DNA: dove il DNA è danneggiato sono prodotte delle molecole di RNA che contribuiscono al riconoscimento e alla riparazione della lesione stessa (i risultati sono stati pubblicati rispettivamente su Nature (1) nel 2012 e su Nature (2) Cell Biology nel 2017).

Studio sulle simulazioni atomistiche del sistema cellulare composto da proteine e Rna

Una simulazione ha permesso di far luce, per la prima volta al mondo a livello atomico, sul funzionamento del sistema spliceosoma, composto da RNA e proteine

Per la prima volta una ricerca della Sissa e del Cnr fa luce con simulazioni atomistiche sul funzionamento di un complesso sistema cellulare, composto da proteine e Rna, i cui difetti sono coinvolti in più di 200 malattie.

Un passo fondamentale per lo sviluppo di possibili farmaci. La ricerca è stata pubblicata sulla rivista Pnas.(1)

Una raffinata simulazione al computer ha permesso ai ricercatori della Sissa e dell’Istituto officina dei materiali del Consiglio nazionale delle ricerche (Cnr-Iom) di far luce, per la prima volta al mondo a livello atomico, sul funzionamento di un sistema biologico importantissimo, il cui nome è spliceosoma, che lavora come il più abile maestro di atelier. Lo spliceosoma è composto da 5 filamenti di RNA e centinaia di proteine. I ricercatori hanno scoperto che tra questi elementi la proteina Spp42 del lievito (la cui corrispondente nell’uomo si chiama Prp8) coordina i diversi componenti che, tutti assieme, maneggiano i loro strumenti di sartoria per portare a termine un minutissimo processo di taglia e cuci grazie al quale l’informazione genetica può essere correttamente trasformata in un prodotto di perfetta fattura e quindi funzionante, come le proteine. Un processo cellulare molto delicato, il cui difetto è alla base di più 200 malattie nell’uomo, tra cui alcuni tipi di cancro. La comprensione del funzionamento delle componenti dello spliceosoma potrebbe essere di basilare importanza per la cura di queste patologie, ad esempio per lo sviluppo di nuovi farmaci in grado di regolare e modulare l’attività di questi ‘sarti molecolari’. La ricerca è appena stata pubblicata sulla rivista Proceedings of the National Academy of Science of the United States of America (Pnas).

Il ‘taglia e cuci’ dell’informazione genetica

Per dar vita al suo prodotto finale, un gene deve essere prima di tutto copiato da uno specifico apparato. La copia, denominata RNA messaggero o mRNA, è incaricata di trasportare l’informazione contenuta nel DNA agli altri apparati della cellula dove viene trasformata in proteine.

Berrino: state attenti alle diete che fanno ingrassare

Franco BerrinoEbbene, quanti di voi sanno che esiste la dieta dimagrante che fa ingrassare?

Proprio così, e si tratta della classica dieta che noi facciamo per perdere peso.

Quella che ognuno di noi pensa essere la più giusta ed equilibrata. In realtà di sano e genuino a ben poco.

Forse è per questo che non riesce mai a portare seriamente a compimento “l’obbiettivo dieta”…Forse non è quella adatta e quindi invece di ottenere I risultati sperati, si peggiora inspiegabilmente!

Ebbene si, a quanto pare è proprio così e ce lo spiega il Professor Berrino.

Da sempre si impegna nella propaganda della giusta alimentazione, uno stile di vita sano che faccia bene non solo al corpo.

Egli stesso infatti afferma:

“NON SONO I GRASSI CHE FANNO INGRASSARE, SONO LE PROTEINE. LE QUALI INTOSSICANO IL NOSTRO ORGANISMO. FARE UNA DIETA POVERA DI GRASSI E RICCA DI PROTEINE CI PORTA A PERDERE PESO SOLO APPARENTEMENTE. DOPO AVER SMESSO, SI INGRASSA NUOVAMENTE E PIU’ DI PRIMA!”