Circuiti

Le cellule cablano le loro reti di comunicazione

Le cellule cablano le loro reti di comunicazione

Le cellule del corpo sono cablate come chip di computer per dirigere segnali che istruiscono il loro funzionamento.

Secondo a una ricerca, finanziata dalla British Heart Foundation e pubblicata su Nature Communications, (1) è emerso che: a differenza di un circuito fisso, le cellule del corpo possono cablare rapidamente le loro reti di comunicazione per cambiare il loro comportamento. La scoperta di questa rete cellulare fornisce una più ampia comprensione delle dinamiche di diffusione delle istruzioni indirizzate a una cellula.

Si pensava che i vari organi e strutture all'interno di una cella fluttuassero nel citoplasma.

I ricercatori dell'Università di Edimburgo hanno trovato informazioni veicolate attraverso una rete di fili guida che trasmettono segnali su distanze minuscole e su scala nanometrica. È il movimento di molecole cariche attraverso queste minuscole distanze che trasmettono informazioni, proprio come in un microprocessore informatico, affermano gli scienziati.

Questi segnali localizzati sono responsabili di orchestrare le attività della cellula, come istruire le cellule muscolari per rilassarsi o contrarsi. Quando questi segnali raggiungono il materiale genetico nel cuore della cellula, chiamato nucleo, istruiscono piccoli cambiamenti nella struttura che rilasciano geni specifici in modo che possano essere espressi. Questi cambiamenti nell'espressione genica alterano ulteriormente il comportamento della cellula. Quando, per esempio, la cellula si sposta da uno stato stazionario a una fase di crescita, il sistema viene completamente riconfigurato per trasmettere segnali che attivano i geni necessari per la crescita.

I ricercatori asseriscono che comprendere il codice che controlla questo sistema di cablaggio potrebbe aiutare a capire lo sviluppo di patologie come l'ipertensione polmonare e il cancro. Questa comprensione potrebbe un giorno permettere di scoprire nuove terapie.

Un computer flessibile all'interno di un flacone di medicinali

Un computer flessibile all'interno di un flacone di medicinali

Un computer flessibile all'interno di un flacone di medicinali che invia avvisi wireless quando rileva manomissioni, sovradosaggio o condizioni di conservazione non sicure.

Queste sono solo alcune delle molte potenziali applicazioni per la tutela della salute che offre la nuova tecnologia dei sensori sviluppata da un team della King Abdullah University of Science & Technology (KAUST).

La tecnologia digitale offre opportunità per migliorare gli approcci tradizionali ai problemi che minacciano la salute umana. Ad esempio, le reti di piccoli sensori indossabili dispiegati negli ospedali possono essere utilizzate per monitorare i focolai dell'influenza in tempo reale. Ma gli alti costi, associati alla produzione elettronica, fanno sì che questi sensori non sono disponibili dove sono più necessari, come alle popolazioni a basso reddito che soffrono in modo sproporzionato le epidemie.

Il dottor Muhammed M. Hussain, (1), il dottorando Sherjeel Khan e colleghi stanno lavorando per rendere i sensori più accessibili con l'impiego di materiali più economici. Ad esempio, hanno recentemente dimostrato che è possibile creare sensori di temperatura e umidità dalla carta disegnando circuiti con inchiostro conduttivo.

Il team ha ora sviluppato un sensore elastico: un nastro conduttivo anisotropico con una vasta gamma di applicazioni sensibili al tocco. Assemblato, esso racchiude minuscole particelle d'argento tra due strati di nastro adesivo di rame. Il nuovo materiale non è conduttivo nel suo stato normale, ma quando viene premuto da un dito, il nastro a doppio strato crea una connessione elettrica che invia un segnale a un lettore esterno.

“Dispositivi simili sono stati utilizzati nei display a schermo piatto”, spiega Sherjeel Khan, “ma li abbiamo resi semplici da costruire e facili da usare praticamente da chiunque”.

Nuovi composti per i superconduttori

Questo studio scientifico dimostra che si può riprodurre una superconduttività in composti con argento e fluoro al posto di rame e ossigeno

Temperature relativamente più alte per raggiungere la superconduttività con argento e fluoro al posto di rame e ossigeno (con i quali si è ottenuto il record premiato con il Nobel).

È quanto propone un team di ricerca internazionale cui partecipa il Consiglio nazionale delle ricerche (Ismn, Istituto Spin, Isc). Tale risultato potrebbe consentire un utilizzo molto più economico nella diagnostica medica e negli acceleratori. Lo studio è pubblicato su su Proceeding of the National Academy of Sciences (Pnas). (1)

I superconduttori ‘chiedono’ il freddo per condurre l'elettricità senza perdita d'energia. Infatti se portati a temperature pari o inferiori a -140? permettono un moto perpetuo degli elettroni che viene sfruttato per creare grandi campi magnetici. Tuttavia questi materiali speciali, usati per la diagnostica medica, per esempio la risonanza magnetica, o negli esperimenti nei grandi acceleratori come Lhc del Cern potrebbero essere utilizzati più ampiamente se si potesse evitare di raffreddarli a bassissima temperatura, operazione che richiede costi elevati.

Un team internazionale composto da ricercatori del Consiglio nazionale delle ricerche (Istituto per lo studio dei materiali nanostrutturati, Istituto Spin, Istituto dei sistemi complessi) e colleghi di Polonia, Regno Unito, Slovenia, Stati Uniti e Repubblica Slovacca hanno proposto una nuova famiglia di composti.

“Finora il record a pressione ambiente è stato ottenuto con una famiglia di materiali contenenti rame e ossigeno che devono essere raffreddati ‘solo’ fino a -140? per diventare superconduttori: una scoperta che è valsa il premio Nobel a Bednorz e Müller nel 1987”, spiega José Lorenzana, direttore dell’Istituto dei sistemi complessi (Cnr-Isc).

“Curiosamente, i materiali di base per fare questi superconduttori non sono buoni conduttori ma ceramici isolanti, simili a una porcellana con caratteristiche molto peculiari, in grado di sfidare le leggi basilari sulla conduttività dei solidi e con forti fluttuazioni quantistiche, fenomeni considerati il “concime”, cioè necessari, per raggiungere la superconduttività ad alta temperatura. Solo dopo un’appropriata sostituzione chimica diventano metallici a temperatura ambiente e superconduttori se raffreddati. I nostri studi hanno mostrato che è possibile riprodurre lo stesso ‘concime quantistico’ che dà luogo alla superconduttività in materiali con argento e fluoro al posto di rame e ossigeno”.

Pagine