Ricerche

La Terra ricicla il fondo dell'oceano in diamanti

La Terra ricicla il fondo dell'oceano in diamanti

I diamanti sul tuo dito sono molto probabilmente fatti di fondali marini riciclati e cucinati in profondità sotto la crosta terrestre.

Secondo una nuova ricerca, pubblicata su Science Advances, (1) condotta dai geoscienziati della Macquarie University a Sydney, in Australia, tracce di sale intrappolate in molti diamanti mostrano che le pietre sono formate da antichi fondali marini che sono stati sepolti in profondità sotto la crosta terrestre.

La maggior parte dei diamanti trovati sulla superficie terrestre sono formati in questo modo, altri sono creati dalla cristallizzazione di fondenti nel profondo del mantello terrestre.

Negli esperimenti che ricreano le pressioni estreme e le temperature trovate a 200 chilometri di profondità, il dottor Michael Förster, il professor Stephen Foley, il dottor Olivier Alard e i colleghi della Goethe Universität e Johannes Gutenberg Universität in Germania, hanno dimostrato che l'acqua marina nei sedimenti, dal fondo dell'oceano, reagisce nel modo giusto per produrre l'equilibrio di alcuni sali trovati nel diamante.

Lo studio pone una domanda di lunga data sulla formazione dei diamanti. A tal proposito il dottor Michael Förster asserisce: “c'era una teoria secondo cui i sali intrappolati all'interno dei diamanti provenivano dall'acqua di mare marina, ma non potevano essere testati. Le nostre ricerche hanno dimostrato che provenivano da sedimenti marini.”

I diamanti sono cristalli di carbonio che si formano sotto la crosta terrestre in parti molto antiche del mantello. Sono portati in superficie con le eruzioni vulcaniche tramite l'espulsione di un particolare tipo di magma chiamato kimberlite.

Gli esperimenti rivelano la fisica dell'evaporazione

Gli esperimenti rivelano la fisica dell'evaporazione

Durante il processo della fisica dell'evaporazione i cambiamenti di pressione, più della temperatura, influenzano fortemente la velocità con cui i liquidi si trasformano in gas.

È un processo così fondamentale per la vita di tutti i giorni - in ogni cosa, dalla tua caffettiera mattutina alla grande centrale elettrica - che spesso è dato per scontato: il modo in cui un liquido si allontana da una superficie calda.

Eppure sorprendentemente, questo processo di base è stato solo ora, per la prima volta, analizzato in dettaglio a livello molecolare, in una nuova analisi del dottor Zhengmao Lu, (1) del del Massachusetts Institute of Technology, professore di ingegneria meccanica e capo del dipartimento della scienziata Evelyn Wang, (2) e altri tre al Massachusetts Institute of Technology e all'Università di Tokyo. Lo studio appare sulla rivista Nature Communications.

La dottoressa Evelyn Wang spiega: “Si scopre che per il processo di cambiamento di fase liquido-vapore, una comprensione fondamentale è ancora relativamente limitata. Sebbene siano state sviluppate molte teorie, in realtà non ci sono prove sperimentali dei limiti fondamentali della fisica dell'evaporazione. È un processo importante da capire perché è così onnipresente. L'evaporazione è prevalente in diversi tipi di sistemi come la generazione di vapore per centrali elettriche, le tecnologie di desalinizzazione dell'acqua, la distillazione a membrana e la gestione termica, come ad esempio i tubi di calore. Ottimizzare l'efficienza di tali processi richiede una chiara comprensione delle dinamiche in gioco, ma in molti casi gli ingegneri fanno affidamento su approssimazioni o osservazioni empiriche per guidare le loro scelte di materiali e condizioni operative.”

Utilizzando una nuova tecnica per controllare e rilevare le temperature sulla superficie di un liquido, i ricercatori sono stati in grado di identificare un insieme di caratteristiche universali correlate ai cambiamenti di tempo, pressione e temperatura che determinano i dettagli del processo di evaporazione. Nel processo, hanno scoperto che il fattore chiave, che determinava la velocità di evaporazione del liquido, non era la differenza di temperatura tra la superficie e il liquido ma piuttosto la differenza di pressione tra la superficie del liquido e il vapore ambientale.

Strumenti matematici per studiare i tumori

Strumenti matematici per studiare i tumori

L'analisi matematica delle immagini dei tumori infantili aiuta a capire il loro grado di aggressività.

I ricercatori del Dipartimento di Biologia Cellulare dell'Università di Siviglia e dell'Istituto di Biomedicina di Siviglia (IBiS) hanno pubblicato uno studio volto a sviluppare nuove terapie per combattere il cancro infantile.

Questo progetto rappresenta un passo in avanti dello studio del cancro che potrebbe aprire nuove vie di ricerca per aiutare a capire cosa rende un tumore meno aggressivo e come può essere combattuto. Tuttavia, i ricercatori sottolineano che la loro scoperta non rappresenta di per sé una cura per il cancro.

Il neuroblastoma è un tipo di cancro che ha origine durante lo sviluppo del sistema nervoso. Colpisce principalmente i bambini con meno di 18 mesi. È il tumore solido più comune nella prima infanzia e, nonostante i grandi miglioramenti apportati al tasso di guarigione per altri tumori infantili, il tasso di sopravvivenza per i pazienti affetti da questa tipologia tumorale è molto meno soddisfacente.

È evidente che il luogo in cui si trova e la matrice extracellulare che lo supporta svolgono un ruolo importante nella crescita iniziale e nello sviluppo del tumore. Questa impostazione è formata da una rete di fibre e fibrille che, a seconda della loro densità e del modo in cui sono collegate, conferiscono più o meno rigidità a questo microambiente tumorale.

Pertanto, è importante capire in che modo le cellule tumorali sono correlate alla matrice extracellulare e come sono organizzate le fibre e le fibrille. Questo non è facile.

Per raggiungere questo obiettivo, i ricercatori hanno combinato in questo studio l'analisi di immagini di campioni bioptici di tumori da pazienti affetti da neuroblastoma, con nuove procedure matematiche (Graph Theory) che hanno permesso loro di descrivere come sono organizzate le fibrille di vitronectina.

Pagine