Scienza

Diagnosticare patologie con la tecnologia bio-elettronica SiMoT

Con la tecnologia bio-elettronica SiMoT gli scienziati hanno misurato concentrazioni bassissime di proteine fino al limite record di una singola molecola

Ricercatori italiani dimostrano la possibilità di rivelare una singola proteina con un dispositivo bio-elettronico grande qualche millimetro, quindi fabbricabile su vasta scala a basso costo. Promette di diagnosticare patologie progressive non solo prima che i sintomi si manifestino ma addirittura appena l’organismo produce i primi bio-marcatori specifici.

Il risultato è pubblicato su Nature Communications ed è recensito da Nature.

È un successo tutto italiano - in collaborazione fra l’Istituto di fotonica e nanotecnologie del Consiglio nazionale delle ricerche (Cnr-Ifn), l’Università degli studi di Bari ‘Aldo Moro’ (Uniba), l’Università di Brescia (Unibs) e il Consorzio per lo sviluppo di sistemi a grande interfase (Instm) - la prima misura record di una singola molecola di proteina, usando un transistor di dimensioni millimetriche. Il lavoro è frutto di un approccio interdisciplinare coordinato da Luisa Torsi docente all’Università di Bari e condotto dal responsabile Cnr-Ifn di Bari, Gaetano Scamarcio, con un team di chimici, fisici ed ingegneri formato da Cinzia Di Franco del Cnr, Giuseppe Mangiatordi, che prenderà servizio al Cnr a dicembre, Eleonora Macchia, Kyriaki Manoli, Brigitte Holzer, Domenico Alberga e Gerardo Palazzo di Uniba, Fabrizio Torricelli e Matteo Ghittorelli di Unibs.

Lo studio promette di poter diagnosticare patologie progressive non solo prima che i sintomi si manifestino, ma addirittura appena l’organismo produce i primi bio-marcatori specifici. Una potenziale rivoluzione per la diagnostica medica che, attualmente, si basa su tecnologie che rivelano al più centinaia di migliaia di marcatori. Nature Communications ha pubblicato il lavoro e Nature ha pubblicato su questa innnovativa tecnologia SiMoT un ‘technology highligth’.

“La prima evidenza sperimentale della misura di concentrazioni bassissime di proteine fino al limite record di una singola molecola è stata possibile usando un transistor di dimensioni millimetriche. è una ricerca alla quale abbiamo lavorato per oltre due anni ed è una grandissima soddisfazione vederla decollare”, sottolinea Gaetano Scamarcio del Cnr-Ifn.

Il suono come mezzo di ricerca

Studiosi della Stanford University stanno lavorando per interpretare e manipolare ogni suono proveniente da più sorgenti del mondo che ci circonda

Il mondo del suono contiene una grande quantità di informazioni su tutto quello che ci circonda. Gli studiosi della Stanford University stanno esplorando questo paesaggio invisibile come strumento di ricerca e come mezzo per capirsi.

Gli accademici solitamente effettuano ricerche basandosi su ciò che vedono: leggono articoli di giornale; esaminano manoscritti; osservano al microscopio. Ma alcune cose possono essere apprese solo attraverso il suono.

Il suono del boom dei vulcani, il suono prodotto dal ronzio delle ali delle zanzare o il tono della voce di una persona trasmettono ad un osservatore visivo tutte quelle informazioni che la vista non può percepire. La sfida in tutti questi è imparare come dare un senso ai suoni che ci circondano, in alcuni casi con la tecnologia e in altri semplicemente ascoltandoci con più attenzione.

Oltre ad aiutarci a interagire con il mondo e l'uno con l'altro, il suono può essere uno strumento quasi fisico. Ad esempio, frequenze oltre la portata dell'udito umano possono sistemare le cellule cardiache in laboratorio. Le onde prodotte dal suono possono anche essere un mezzo per scrutare il corpo e diagnosticare le condizioni di salute.

Studiosi della Stanford University provenienti da tutte le branche della medicina, dell'ingegneria, delle scienze sociali e delle arti stanno lavorando in unanimità per interpretare e manipolare questo mondo udibile e per ripristinare l'udito a coloro la cui capacità è diminuita. Stanno persino aiutando le persone a imparare ad ascoltarsi più attentamente.

Il suono dei cambiamenti climatici

Creati nuovi sensori per monitorare la dopamina nel cervello

I neuroscienziati del MIT potranno misurare la dopamina nel cervello per più di un anno. Questo sistema li aiuterà a capire il ruolo della dopamina.

Piccole sonde installate nel cervello potrebbero monitorare i pazienti malati di Parkinson e altre patologie.

La dopamina, che all'interno del cervello funziona da neurotrasmettitore, tramite l'attivazione dei recettori dopaminici specifici e subrecettori, svolge un ruolo importante nel regolare il nostro umore, oltre a controllare il movimento. Molti disturbi, tra cui il morbo di Parkinson, la depressione e la schizofrenia, sono legati a carenze di dopamina. I neuroscienziati del MIT hanno escogitato un modo per misurare la dopamina nel cervello per più di un anno. Essi sono certi che questo nuovo sistema li aiuterà a imparare molto di più sul ruolo della dopamina nel cervello sano e malato.

“Sappiamo che la dopamina è una cruciale molecola neurotrasmettitrice nel cervello, implicata nelle condizioni neurologiche, neuropsichiatriche e nella nostra capacità di apprendere. Tuttavia, per noi è risultato impossibile monitorare i mutamenti nel rilascio online di dopamina in periodi di tempo abbastanza lunghi da riferirli alle condizioni cliniche”, afferma Ann Graybiel,(1) professoressa del MIT Institute, membro del McGovern Institute for Brain Research del MIT e uno degli autori senior dello studio.

Il dottor Michael J. Cima,(2) professore di ingegneria presso il Dipartimento di Scienza dei Materiali e Ingegneria nonché membro del David H. Koch Institute for Integrative Cancer Research (Massachusetts Institute of Technology MIT) per la ricerca sul cancro integrativo, e Rober Langer,(3) Professore e membro del David H. Koch Institute for Integrative Cancer Research (Massachusetts Institute of Technology MIT). Entrambi sono anche autori principali dello studio. La dottoressa del MIT Helen Schwerdt è l'autore principale dell'articolo, che appare nel numero del 12 settembre di Communications Biology.(4)

Pagine