Genetica

Basso tasso evolutivo del genoma nelle marmotte alpine

Basso tasso evolutivo del genoma nelle marmotte alpine

Le marmotte alpine sono riuscite a sopravvivere per migliaia di anni nonostante la loro bassa diversità genetica.

Quali effetti ha il cambiamento climatico sulla diversità genetica degli organismi viventi? In uno studio condotto da Charité - Universitätsmedizin Berlin, un team internazionale di ricercatori ha analizzato il genoma della marmotta alpina, un superstite dell'era glaciale che ora vive in gran numero nelle zone alpine situate ad alta quota.

I risultati sono stati inaspettati: La marmotta alpina ha perso la sua diversità genetica durante gli eventi climatici legati all'era glaciale e da allora non è stata in grado di recuperarla. I risultati di questo studio sono stati pubblicati sulla rivista Current Biology. (1)

Siccome la bassa diversità genetica della marmotta alpina non può essere spiegata dalle sue abitudini di vita, i ricercatori hanno usato l'analisi computerizzata per ricostruire il passato genetico della marmotta. Dopo aver combinato i risultati di analisi genetiche complete con i dati provenienti dalla documentazione di reperti fossili, i ricercatori sono giunti alla conclusione che la marmotta alpina ha perso la sua diversità genetica a causa di molteplici adattamenti climatici durante l'ultima era glaciale.

Uno di questi adattamenti si è verificato durante la colonizzazione animale della steppa del Pleistocene (2) all'inizio dell'ultima era glaciale (tra 110.000 e 115.000 anni fa). Un secondo adattamento accadde quando la steppa del Pleistocene scomparve di nuovo verso la fine dell'era glaciale (tra 10.000 e 15.000 anni fa). Da allora, le marmotte hanno popolato le praterie d'alta quota delle Alpi, dove le temperature sono simili a quelle dell'habitat della steppa del Pleistocene.

Tracciata l'ascendenza dei moderni grani per il pane

Tracciata l'ascendenza dei moderni grani per il pane

L'agricoltura del ventunesimo secolo utilizza una moltitudine di varietà ad alto rendimento adattate ad una vasta gamma di ambienti. Tuttavia, vi è la necessità di coltivare continuamente nuove varietà di frumento per il pane per adattarsi ai cambiamenti climatici a livello globale.

Dalla rivoluzione agricola, circa 12.000 anni fa, il Triticum aestivum, altrimenti noto come grano tenero, è emerso come una delle colture più importanti del mondo. Insieme alla crescente popolazione umana e al clima che cambia, la domanda di grano con un rendimento più elevato e una maggiore capacità di recupero sta aumentando.

In un nuovo studio internazionale, la diversità genetica di 487 genotipi di grano, provenienti da vaste regioni del mondo, è stata catalogata e contestualizzata con tratti agronomici. La mappa di questo ricco insieme di diversità genetiche nel grano di frumento mette in evidenza la nostra attuale conoscenza della discendenza del grano e apre nuove strade all'interno della moderna gestione selettiva del frumento.

L'evoluzione del grano è una storia complessa di eventi di ibridazione e flusso genico, che ha portato allo allohexaploid (con sei serie di cromosomi) Triticum aestivum, la specie di grano che oggi conosciamo come il 'pane di grano'. Il moderno pane di grano ha avuto origine nella Mezzaluna Fertile (1) circa 10.000 anni fa e il suo pool genico è stato modellato dagli esseri umani come risultato di addomesticamento e coltivazione. Oggi, le varietà ad alto rendimento di Triticum aestivum si possono trovare in tutto il mondo, ciascuna varietà è adattata al particolare ambiente in cui viene coltivata, rendendo il grano una delle tre specie vegetali più importanti al mondo per le calorie e le proteine.

Adattamento di una specie di pesci in acque inquinate

specie di pesci, acque inquinate, specie ittica, Edoardo Capuano, paludi costiere, killifish, ambiente, inquinamento, Houston, costa, genetica, specie

In che modo la genetica, le risorse e un parente di lunga data hanno aiutato una fortunata specie di pesci ad adattarsi all'inquinamento estremo

Uno studio pubblicato di recente dalla rivista Science, (1) spiega come una specie di pesci in Texas, nell'area conosciuta con il nome di 'Houston Ship Channel', (2) è stata in grado di adattarsi a quelli che normalmente sarebbero livelli letali di tossine per la maggior parte delle altre specie ittiche.

Due scienziati della University of California, Davis e della Baylor University hanno deciso di investigare questo fenomeno con lo scopo di poter comprendere le dinamiche per mezzo delle quali altre specie ittiche potrebbero adattarsi in ambienti drasticamente modificati.

Il minnow like Gulf killifish (3), negli habitat delle paludi costiere, rappresenta per un numero di specie di pesci più grandi una parte importante della rete alimentare.

Il dottor Andrew Whitehead, (4) autore dello studio e professore di tossicologia ambientale della UC Davis, spiega: “La maggior parte delle specie non sopravvive in ambienti radicalmente modificati. Studiando gli esemplari sopravvissuti, otteniamo informazioni su ciò che serve per avere successo. Nel caso del killifish, si è arrivati a enormi dimensioni ma la popolazione è stata fortunata.”

Pagine